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ABSTRACT: In the single-screw extruder, the vibration force
field is applied to the solids conveying process by the axial
vibration of the screw and the novel concept on the solids con-
veying process being strengthened with the vibration force
field has been brought forward in this study. We establish the
mathematical model that describes the solids conveying pro-
cesswith the vibration force field and obtain the approximative
analytical solutions of the pressure and velocity of the solids
conveying in the down-channel. In the new theory, if the screw
has no axial vibration the solids conveying pressure is the same
as that of the Darnell and Mol theory, but the density and ve-

locity of solids conveying along the screw channel is variable,
which has modified the Darnell and Mol theory in which the
density and velocity of the solids conveying along the screw
channel was considered invariable. The results reveal that the
axial vibration of the screw can increase the average pressure
of solids conveying, decrease the channel length of the solids
conveying section and increase the solids conveying angle.
� 2006Wiley Periodicals, Inc. J Appl Polym Sci 102: 2998–3007, 2006
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INTRODUCTION

The single-screw extruder is the key equipment of
plastic processing. Its performance is closely connected
with screw geometry and operating conditions. The
systematic investigation of the extrusion process has
shown that no single mathematical model can be used
to adequately describe the flow through the entire ex-
truder in the literature.1–4 That is, very different physi-
cal processes are controlling over different zones of the
extruder. In other words, studies of the extrusion pro-
cess are limited to the examination of one particular
zone. Although the solids conveying zone is only a
subsection of the extruder, it remains a major obstacle
to the complete understanding and modeling of an
extrusion process.

In comparison to the large of research on melt con-
veying in screw extruder, relatively little attention has
been paid to the solid conveying for the complexity of
the solid conveying process. But the solid conveying
has important influence on the performance of the
extruder. So, former researcher brought some theories
forward by large hypothesis. In all classic work, Darnell
and Mol were the first to obtain solutions for the solids
conveying zone in screw extruders. More recently,
there have been various refinements applied to their
one-dimensional plug flow model by Schneider,5

Tadmor and Broyer,6,7 Lovegrove and Williams,8–10

Chung,2,11 and Zhu and Chen.3,12–14 This classic work
has provided a basis for many theoretical and experi-
mental investigations of solids conveying zone. It is
well-known that the model proposed by Darnell and
Mol is in the form of plug flow. Then, the plug flow
model suffers from several shortcomings. The most im-
portant one is that they do not predict the density varia-
tion, which actually exists in the extrusion process. Sec-
ond, they assumed that the velocity of solids conveying
along the screw channel is constant.

The gap between the practice and theory of extru-
sion is unreasonably large. In particular, the vibration
force field is applied to the solids conveying process
in the single-screw extruder.15–18 It is our objective in
this study to describe the novel concept on the solids
conveying process being strengthened by the vibra-
tion force field and to discuss dependence of solids
conveying on screw axial vibration in single screw
extruders.

DESCRIPTION OF THE SOLIDS
CONVEYING MODEL

The self-developed experimental extruder has not
only natural characteristics, which the ordinary ex-
truder has, but also the axial vibration of the screw.
The sketch map of screw and barrel is shown in
Figure 1. To simplify the solids conveying phenom-
enon and allow for an analytical solution, some
assumptions are needed as follows.
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1. The moving solid polymer granules are com-
pressible continuum in the channel;

2. The solid polymer granules are conveyed in the
rectangle channel, which has the above move-
able board, the two movable directions of the
above moveable board and the material lie at
an angle y. It is shown in Figure 2;

3. The friction between the polymer and the wall
of the channel only lies on the normal stress,
and then it is independent of the velocity and
the position of the material;

4. The angle is j between the direction of the
force that the moveable board acts on the poly-
mer granules and the moving direction of the
moveable board, and the change of the moving
direction of the material is neglected, the aver-
age of the angle is �j;

5. The ratio of the normal stress to the axial (the
moveable direction) stress is constant (K), it is
independent of the position, and the change of
the stress distribution in the material is neglected;

6. The influence that the change of the material
temperature brings is neglected;

7. The material density and the axial stress (ten-
sion) only change along the moving direction of
the material;

8. Then, the solids conveying model based on the
above assumptions can be gotten. It is shown in
Figure 2.

MATHEMATICAL MODEL

A down-channel differential element is depicted in
Figure 1. The continuity equation can be determined
for the solid polymer granules by considering a con-
servation of mass of the differential element. Thus,
the equation is:

qr
qt

þ v
qr
qz

þ r
qv
qz

¼ 0 (1)

where r is the material density at pressure p.
Experimental work of Chung2 has indicated that

the change of the material density can be expressed
by an empirical equation of the form:

r ¼ rm � ðrm � raÞ e�C0p (2)

where rm is the material density at the utmost pres-
sure, ra is the material density at the atmospheric
pressure, p is pressure, C0 is constant and is given
according to experimental data.

Substituting eq. (2) into eq. (1) gives the expression

qp
qt

þ v
qp
qz

þ 1

C0

rm
rm � ra

eC0p � 1

� �
qv
qz

¼ 0 (3)

Equation (3) is the continuity equation.
The equation of motion can be determined by

applying a force and torque balance on a differential
element of the solid polymer granules in the down-
channel direction. The equation is given below.

qp
qz

þ Kf pþ r v
qv
qz

þ qv
qt

� �
¼ 0 (4)

where

Kf ¼ fw1K

H1

fw2
fw1

W þ 2H1

W
þ fw2 sinðyþ �jÞ � cosðyþ �jÞ

� �
(5)

To get the analytical solution of pressure and ve-
locity in the channel, �p, �r, �v, t0, o0, and L are defined
as the dimensionless characteristic parameters of
pressure, density, velocity, time, angular frequency,
and length, respectively.

Assuming

p ¼ �pð1þ p�Þ r ¼ �rð1þ r�Þ v ¼ �vð1þ v�Þ
A ¼ LA� t ¼ t0t

� o ¼ o0w
� z ¼ Lz�

(
(6)

By substituting eq. (6) into eq. (3) and considering
�vt0=L � 1; v� � 1; eC0�pp

� � 1 � 1, the dimensionless
expression of the continuity equation is shown as

qp�

qt�
þ 1

Sh

qp�

qz�
þ Bh

Sh

qv�

qz�
¼ 0 (7)

Figure 2 Schematic diagram of solid conveying model.

Figure 1 The sketch map of screw and barrel.
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where

Sh ¼ L

�vt0
(8)

Bh ¼
�reC0�p

C0�pðrm � raÞ
(9)

By substituting eq. (6) into eq. (4) and considering
v� � 1; rm�v

2=�p � 1, the dimensionless expression of
the equation of motion is shown as

qp�

qz�
þ Chp

� þDh
qv�

qz�
þ Eh

qv�

qt�
þ Ch ¼ 0 (10)

where

Ch ¼ LKf (11)

Dh ¼ rm�v
2

�p
(12)

Eh ¼ DhSh ¼ rm�vL
t0�p

(13)

APPROXIMATE ANALYTICAL SOLUTION

To analyze the continuity equation and the equation
of motion, omitting the superscripts in the eqs. (7)
and (10), a differential equation group is given
below. An amendatory coefficient (k) must be added
into the equation group for difference that is intro-
duced by linearizing the equations.

qp
qt

þ k

Sh

qp
qz

þ Bh

Sh

qv
qz

¼ 0

qp
qz

þ Chpþ kDh
qv
qz

þ Eh
qv
qz

þ Ch ¼ 0

8>><
>>: (14)

In the case, the dimensionless initial conditions is
vðz; tÞ t¼0 ¼ 0; pðz; tÞj jt¼0¼ 0. Transforming eq. (14) by
Laplace expansion obtains

sPðsÞ þ k

Sh

dPðsÞ
dz

þ Bh

Sh

dVðsÞ
dz

¼ 0

dPðsÞ
dz

þ ChPðsÞ þ kDh
dVðsÞ
dz

þ sEhVðsÞ þ 1

s
ch ¼ 0

8>><
>>:

(15)

With the aid of eq. (15), a two-order differential
equation group is obtained

d2PðsÞ
dz2

þ b
dPðsÞ
dz

� l2PðsÞ ¼ 0

d2VðsÞ
dz2

þ b
dVðsÞ
dz

� l2VðsÞ ¼ ShCh

Bh � K2Dh

8>>><
>>>:

(16)

where

b ¼ BhCh � skðShDh þ EhÞ
Bh � k2Dh

¼ b1 � sb2 (17)

l2 ¼ ShEh

Bh � k2Dh
s2 ¼ bs2 (18)

In the case, eq. (16) should meet the following
boundary conditions.

pðz; tÞ z¼0 ¼ p0ðtÞj
vðz; tÞ z¼0 ¼ v0ðtÞj

(
(19)

then, transforming eq. (19) by Laplace expansion
obtains

PðsÞ z¼0 ¼ L½p0ðtÞ� ¼ P0ðsÞj
VðsÞ z¼0 ¼ L½v0ðtÞ� ¼ V0ðsÞj

(
(20)

Solving eq. (16) obtains

PðsÞ ¼ sEh

a1 � a2
ðer1z � er2zÞV0ðsÞ þ Ch

ða1 � a2Þs ðe
r1z � er2zÞ

� 1

a1 � a2
� ða2er1z � a1e

r2zÞPoðsÞ

VðsÞ ¼ 1

sEhða1 � a2Þ
h
sEhða1er1z � a2e

r2zÞV0ðsÞ � Ch

s2Eh

� a1a2ðer1z � er2zÞP0ðsÞ þ Ch

s
ða1er1z � a2e

r2zÞ
i

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(21)

where

r1 ¼
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4l2

q
2

(22)

r2 ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4l2

q
2

(23)

a1 ¼ kDh

Bh
ðsSh þ kr1Þ � r1 � Ch (24)

a2 ¼ kDh

Bh
ðsSh þ kr2Þ � r2 � Ch (25)

If v0ðtÞ is the power of system, the steady response
of the first term value of eq. (21) can be gotten when
the power of system is the exponent function of
imaginary number, in other words, if v0ðtÞ ¼ vme

jot,
then
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p1ðz; tÞ ¼ sEh

a1 � a2
ðer1z � er2zÞ s¼jw vme

jot
�� (26)

If

v0ðtÞ ¼ vmIme
jot ¼ vm sinot (27)

where

vm ¼ oA sin y
�v

(28)

Then, the Laplacian (s) is tending to zero when
time is infinite according to terminal value theorem
and b2 � 1 the result of the eqs. (26) and (27) are
given respectively, as

p1ðz; tÞ ¼ 2vmoBhEh

ðk2Dh � BhÞa e
�b1=2z sh

1

2
az

� �
cosot (29)

v1ðz; tÞ ¼ �vmb1
a

e�b1=2z sh
1

2
az

� �
sinðotþ j0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a
b1

cth
az
2

� �� �2
þ 2Eho

BhCh

� �2
s

ð30Þ

where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 � 4bo2

q
(31)

j0 ¼ tg�1 �2Eho BhCh 1þ a
b1

cth
az
2

� �� �	
 �
(32)

The steady responses of the other term values of
eq. (21) can be gotten by the terminal value theorem.

p2ðz; tÞ ¼ lim
s!0

sBh

ðk2Dh � BhÞa ða2e
r1z � a1e

r2zÞ p0
s

¼ �p0e
�b1z ð33Þ

p3ðz; tÞ ¼ lim
s!0

sChBh

ðk2Dh � BhÞas ðe
r1z � er2zÞ ¼ e�b1z � 1

(34)

v2ðz; tÞ ¼ lim
s!0

s
Bha1a2

sEhðk2Dh � BhÞa ðe
r1z � er2zÞ p0

s

¼ p0
Eh

ð1� e�b1zÞDhSh
Bh

¼ 1

Bh
p0ð1� e�b1zÞ ð35Þ

v3ðz; tÞ ¼ lim
s!0

s
ChBh

s2Ehðk2Dh �BhÞa a1e
r1z � a2e

r2zð Þ� Ch

s2Eh

� �

¼ lim
s!0

Ch

sEh
� Ch

sEh

� �
¼ 0 ð36Þ

then

pðz; tÞ ¼ 2vmoBhEh

ðk2Dh � BhÞa e
�b1=2z sh

1

2
az

� �
cosotþ ð1þ p0Þe�b1z � 1

vðz; tÞ ¼ vmb1
a

e�b1=r2z sh
az
2

� �
sinðotþ jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a

b1
cth

az
2

� �� �2
þ 2Eho

BhCh

� �2
s

þ p0
Bh

ðe�b1z � 1Þ

8>>>><
>>>>:

(37)

where

b1 ¼
KfLra

r0 � k2rmC0v20ðrm � raÞ
(38)

b ¼ rmðrm � �rÞC0L
2

½�r� k2rmðrm � �rÞC0v20�t20
(39)

Eh ¼ rm�vL
�pt0

(40)

Bh ¼
�reC0�p

C0�pðrm � raÞ
¼ �r

ðrm � �rÞC0�p
(41)

If the average of the down-channel direction (z
direction is considered as the dimensionless charac-
teristic parameters of pressure (�p) when the ampli-
tude of the axial vibration of the screw is zero, in
other words,

�p ¼ 1

Z1

Z z

0

p0e
b1=Lzdz (42)

where Z1 is the length of the channel in the down-
channel direction. Then, according to eqs. (2) and (42),
the dimensionless characteristic parameters of density is

�r ¼ rm � ðrm � raÞ e�C0�p (43)

If the velocity of the material at the inlet of the
channel is v0ðtÞ ¼ v0ð1þ A sinotÞ, to ensure the di-
mensionless term v0ðtÞ is pulsating power, in other
words, if v0ðtÞ ¼ vm sinot, then

�v ¼ v0 (44)

Equation (37) is approximate analytical solutions
of the pressure and velocity in the down-channel
when the vibration force field is applied to the solids
conveying process.
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RESULTS AND DISCUSSION

Pressure distribution

As we known from the above approximate analytical
solution that the pressure and velocity of the channel
are cyclical variation. In fact, the compressed mate-
rial is elastic-plastic body. The material can be com-
pressed into a certain state with the instantaneous
pressure is up to the maximum in one vibration pe-
riod, the material have elastic deformation and plas-
tic deformation, so the compressed material have
back-moving distance, which is less than the com-
pressed distance, with the instantaneous pressure
fall to the minimum in the vibration period. For the
material density, it can be considered that the instan-
taneous pressure is equivalent to a virtual value of
the certain pressure. The standard deviations of the
instantaneous pressure can be considered as the vir-
tual value of the certain pressure.

p1eðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t0

Z t0

0

p21ðzÞ cos2 otdt

s
¼ 1ffiffiffi

2
p jp1mðzÞj (45)

where p1mðzÞ is the amplitude function of eq. (29)

jp1mðzÞj ¼ 2vmobBh

Sha
e�b1=2zsh

1

2
az

� �
(46)

then

peðzÞ ¼ 1ffiffiffi
2

p jp1mðzÞj þ ð1þ p0Þe�b1z � 1 (47)

Letting z ¼ 1, p0(1) ¼ 100, b1 ¼ �1.1, b ¼ 0.00223,
Figure 3 can be drawn according to eq. (47). It shows
that the dimensionless pressure of the channel in-
creases with the increases of amplitude and frequency

of the vibration when the dimensionless length of the
channel is 1.

Rewriting eq. (47) with dimension:

peðzÞ ¼
�pffiffiffi
2

p jp1mðzÞj þ p0e
�b1=Lz (48)

If the screw has no axial vibration, eq. (48) reduces to

peðzÞ ¼ p0e
�b1=Lz (49)

Then, when the amplitude of the vibration is zero
or not, the relative degree of the material com-
pressed density can be defined as

xp ¼
rðzÞ � rs

rs
¼ ðrm � raÞðe�C0pt � e�C0ptðzÞÞ

rm � ðrm � raÞe�C0pt

¼ ðrm � raÞe�C0psð1� eC0�p=
ffiffi
2

p
p1mÞ

rm � ðrm � raÞe�C0ps
ð50Þ

Considering 4bo2=b21 ¼ 1, eq. (47) reduce to

peðzÞ � vmobBhffiffiffi
2

p
Shb1

ð1� e�b1zÞ þ ð1þ p0Þe�b1z � 1 (51)

Letting p0(0) ¼ 100, b1 ¼ �1.1, b ¼ 0.002, 1 þ p0
¼ 0.035, Lo bB=

ffiffiffi
2

p
Sb1�v sin y ¼ 0:92, Figures 4–6 can

be drawn according to eq. (51). Figure 4 shows the
diagram is same to Figure 3 within the range of
practical operating conditions when the dimension-
less length of the channel is 1. Figure 5 shows the
effect of the frequency on the dimensionless pressure
of the channel can be drawn the when amplitude of
the vibration is constant (A ¼ 0:001). Figure 6 shows
the effect of the amplitude on the dimensionless
pressure of the channel can be drawn when fre-
quency of the vibration is constant (o ¼ 1).

Figure 3 Influence of the amplitude and frequency of the
vibration on the dimensionless pressure of the channel.

Figure 4 Influence of the amplitude and frequency of the
vibration on the dimensionless pressure of the channel.
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From the above four figures, a conclusion can be got
that the pressure built up with vibration is higher than
the pressure built up without vibration on the same
spot of the channel; the vibration frequency and the
amplitude have a significant influence on the degree of
the build-up pressure. The pressure increases with the
increase of frequency and amplitude.

Rewriting eq. (51) with dimension:

peðzÞ � rm sin yffiffiffi
2

p jKf j
ðe�b1z=L � 1ÞAo2 þ p0e

�b1z=L (52)

To express influence of the vibration on the
dimensionless pressure of the channel definitely the
relative degree of the build-up pressure can be
defined as the impact factor (ep), which the vibration
acts on the pressure when the amplitude of the
vibration is zero or not.

xp ¼
peðzÞ � psðzÞ

psðzÞ ¼ rm sin yffiffiffi
2

p
p0jKf j

1� e�b1z=L
� �

Ao2 (53)

According to the front analysis, b1 less than zero,
then from eq. 53, we can get the impact factor (xp)
increases with the increases of amplitude and fre-
quency of the vibration.

Velocity distribution

Velocity can be analyzed by the same way with the
pressure, and then velocity also has a virtual value.
For 4bo2/b21�1, (2Eho/BhCh)

2 (e�b21�1)2�1, the ex-
pression is obtained from eq. (37)

veðzÞ ¼ p0
Bh

�
ffiffiffi
2

p
Lo0Eh sin y
�vBhjChj Ao2

 !
e�b1z � 1
� 

(54)

Letting vð0Þ ¼ �6:84, b ¼ �1:1,
ffiffiffi
2

p
ELo sin y=B:C:�V

¼ 3:4, p0/B¼�0.19, the following figures can be drawn
according to eq. (54). Figure 7 shows that the dimen-
sionless velocity of the solid polymer granules in the
channel decreases with the increases of the amplitude
and frequency of vibration when the dimensionless
length of the channel is 1.When amplitude of the vibra-
tion is constant (A ¼ 0:01), effect of the frequency of
vibration on the dimensionless velocity of the solid
polymer granules can be drawn in the Figure 8. When
frequency of the vibration is constant (o ¼ 1), effect of
the amplitude of vibration on the dimensionless veloc-
ity of the solid polymer granules can be drawn in the
Figure 9.

The above three figures show that the velocity of the
solids conveying in the channel decreases with power-
law is contrary to the pressure that increases with
power-law; the dimensionless velocity of the solid

Figure 5 Effect of the frequency on the dimensionless
pressure of the channel.

Figure 6 Effect of the amplitude on the dimensionless
pressure of the channel.

Figure 7 Influence of the amplitude and frequency of the
vibration on the dimensionless velocity of the solid poly-
mer granules.
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polymer granules in the channel decreases with the
increases of the amplitude and frequency of vibration.
The reason is that pressure increases with the increases
of amplitude and frequency of the vibration at certain
position.With the increase of pressure, potential energy
of the pressure and elastic potential energy of the differ-
ential element are raised; the energy of motion about
the differential element is decreased according to con-
servation of energy principle, then the velocity of the
differential element decreased.

Rewriting eq. (54) with dimension:

veðzÞ ¼
ffiffiffi
2

p
rmðrm � �rÞC0v0

�rKf
sin yðe�b1

z
L � 1ÞAo2

þ v0 1� C0ðrm � �rÞð�p� p0Þ
�r

e�b1
z
L � 1

� � �
ð55Þ

When vm is zero, it is no vibration, then eq. (55)
reduces to

vsðzÞ ¼ v0
C0v0ðrm � �rÞð�p� p0Þ

�r
ðe�b1

z
L � 1Þ (56)

Length of the solids conveying zone

According to eq. (49), the length of the solids con-
veying zone without vibration force field can be
given as

Z1 ¼ 1

b1
ln

1þ p0
1þ psðzÞ (57)

According to eq. (51), the length of the solids con-
veying zone with vibration force field can be given
as

Z1 ¼ 1

b1
ln

1þ p0 � vmobBhffiffiffi
2

p
Shb1

1þ peðzÞ � vmobBhffiffiffi
2

p
Shb1

(58)

When the build-up pressure is a certain value, it
means the solids conveying zone is the end. Letting
peðzÞ ¼ 5, b1 ¼ �1:1, b ¼ 0:002, pa ¼ 0:1, Lo0bBhffiffi

2
p

shb1
¼ 0:09

in eq. (51), Figure 10 can be drawn. It shows that the
dimensionless length of the solids conveying zone
decreases with the increases of the amplitude and
frequency of the vibration. From the figure, a conclu-
sion can be got that the length of the solids convey-
ing zone is shorter when the vibration force field is
applied to the solids conveying process; the needful
length decreases with the increase of frequency and
amplitude.

Figure 8 Influence of the frequency of vibration on the
dimensionless velocity of the solid polymer granules.

Figure 9 Influence of the amplitude of vibration on the
dimensionless velocity of the solid polymer granules.

Figure 10 Influence of the amplitude and frequency of
the vibration on the length of the solids conveying zone.
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Conveying angle of the solid

Now the influence of the vibration on the conveying
angle will be discussed. For 4bo2/b21 ¼ 1, eq. (52)
can be rearranged as

vmobt0Bh�pþ
ffiffiffi
2

p
Shjb1jp0

vmobt0Bh�pþ
ffiffiffi
2

p
Shjb1jpeðzÞ

e�
b1
L z ¼ 1 (59)

Solving eq. (59), obtains

jb1j � 1� p0
peðLÞ �

Bhvmobt0ffiffiffi
2

p
Sh

�p

peðLÞ
¼ 1� p0

peðLÞ 1þ Bhvmobt0ffiffiffi
2

p
Sh

�p

p0

� �
ð60Þ

If �p ¼ peðLÞ, eq. (60) reduces to

jb1j ¼ 1� p0
peðLÞ � KbAo2 (61)

where

Kb ¼ Bho0bt0 sin yffiffiffi
2

p
Sh�v

(62)

therefore

jKf j � jb1j
L

¼ 1

L
� p0
LpeðLÞ � KbAo2 (63)

According to eq. (5) obtains

�j¼ arcsin
1

f
w1

ffiffiffiffiffiffiffiffiffiffi
12þf 2

w2

p
H1Kf

K
� fw2ðWþ 2H1Þ

W

� �" #
þf1� y

(64)

where

f1 ¼ arctan
1

fw2
(65)

Letting peðLÞ ¼ 50, p0 ¼ 1:01, kb ¼ 5� 10�5 in eq.
(61), influence of the amplitude and frequency of the
vibration on jb1j can be shown by Figure 11. The fig-
ure shows that jb1j decrease with the increase of the
amplitude and frequency of the vibration. jKf j is lin-
early proportional to jb1j according to eq. (63); from
eq. (64), the conveying angle of the solid increases
with jKf j decreases. Thus, it is useful to increase the
conveying angle of the solid that the vibration force
field is applied to the solids conveying process.

EXPERIMENTAL

Equipment and material

The self-developed experimental extruder has half-
opened barrel. The geometric parameters of the ex-
truder are given in Table I.

The material used in this experiment is low-den-
sity polyethylene (LDPE), and its physical character-
istics are shown in Table II.

Method

To differentiate solid from melt, little black carbon is
added to the granule of LDPE (Fig. 12). The experi-
mental parameters are as follows:

1. The speed of the screw is adjustable at the
60 rpm;

2. The range of vibration frequencies of the screw
in the axial direction is 5–25 Hz;

3. The range of vibration amplitudes of the screw
in the axial direction is 0–0.25 mm;

4. The temperature is constant, and it is set as
1408C.

Figure 11 Influence of the amplitude and frequency of
the vibration on the conveying angle of the solid.

TABLE I
Geometric Parameters of the Solids Conveying Section of the Screw

Diameter
of screw

Length of the solids
conveying zone

Helix angle
of screw

Depth of
helix channel

Width of
helix channel

Width of
helix flight

20 mm 120 mm 17.658 3.2 mm 17 mm 2 mm
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According to the abovementioned parameters, the
experiment is carried out as follows:

Keeping the vibration frequency constant and vary-
ing the vibration amplitude;
Keeping the vibration amplitude constant and
varying the vibration frequency.

Result

The curves shown in Figures 13 and 14 present the ex-
perimental results; the results show that the measured
pressure on the endpoint of solid conveying with
vibration is higher than the pressure without vibration
and the measured pressure goes up with nonlinear
rule. In Figures 13 and 14, comparing all curves, the
same trend derived from these curves. It is that the
measured pressure increases with the increases of the
frequency or amplitude.

Figure 15 shows the curves of the distance between
end points of solid conveying with vibration and the
end point without vibration when varying amplitude
with fixed frequency. The curves illustrate an impor-
tant point. The endpoint of solid conveying with vibra-
tion is nearer the inlet of the material than the end-
point without vibration, and the distance between the
endpoint of solid conveying and the inlet of the mate-
rial is shortening with increasing amplitude or freq-
uency. Comparing Figure 15 with Figure 13, an im-

portant point is got. These curves accord with a rule
that the shorter length of solid conveying relative to
the higher pressure.

CONCLUSIONS

By analyzing the abovementioned results, some con-
clusions can be drawn as follows:

1. The build-up pressure of the channel increases
with the increases of the amplitude and fre-
quency of the vibration.

2. The conveying angle of the solid increases with
the increases of the amplitude and frequency of
the vibration.

TABLE II
Physical Characteristics of the Material Used

in the Experiment

Material rm (g/cm3) ra (g/cm
3)

LDPE 0.92 0.52

Figure 12 Photo of sampling. [Color figure can be viewed
in the online issue, which is available at www.interscience.
wiley.com.]

Figure 13 Relationship between the average pressure and
amplitude.

Figure 14 Relationship between the average pressure and
frequency.
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3. The axial vibration of the screw can decrease the
channel length of the solids conveying section.

All these are novel concepts and new theory of sol-
ids conveying in single screw extruders when the
vibration force field is applied to the solids conveying
process. In contrast to the classical theory of solids
conveying, the gap between the practice and theory of
extrusion is smaller. The conclusions are useful to pre-
dict the overall performance of a screw extruder when
the vibration force field is applied to the extrusion
process.

NOMENCLATURE

A amplitude
C0 constant
f frequency
fwl coefficient of friction between the barrel and

solid polymer granules
fwl coefficient of friction between the channel

and solid polymer granules
Hl depth of channel
K the ratio of the normal stress to the axile stress
L length of the solids conveying zone
p pressure
�p dimensionless characteristic parameters of

pressure

pe equivalent pressure
ps steady pressure
p0 initial pressure
t time
t0 dimensionless characteristic parameters of time
v velocity
�v dimensionless characteristic parameters of

velocity
ve equivalent velocity
vs steady velocity
v0 initial velocity
W width of channel
j angle between the direction of the force that

the moveable board acts on the polymer
granules and the moving direction of the
moveable board

�j average of the angle j
g amendatory coefficient
y angle between the moveable directions of the

above moveable board and the material
r density
�r dimensionless characteristic parameters of

density
rm the material density in the utmost pressure
ra the material density in the atmospheric

pressure
o angular frequency
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Figure 15 Curves of the distance between end points of
solid conveying with vibration and the end point without
vibration when varying amplitude with fixed frequency.
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